Multiletekz

COMPACT GC FOR MULTIPLE IMPURITIES

With its plug and play philosophy and offering more features than ever, LDetek pushes further the possibilities with its new chromatograph system. It provides an attractive and cost effective solution for the industrial and laboratory market.

Based on the LDetek high performance detection technology, this stand-alone Gas Chromatograph is a flexible and customized platform providing the best solution for any type of gas analysis.

FEATURES \& DESIGN:

- Multi trace impurities in one chassis
- Multiple configurations available in one chassis
- PED, FID, TCD compatible
- Argon,Helium,Nitrogen and Hydrogen carrier gas
- Isothermal and/or programmed ramping ovens available
- LDetek's electronic flow controllers for carrier \& sample gas
- Optional purifier hooked up on the chassis
- Easy maintenance with its slide out design and front opening door
- Compact \& robust industrial rackmount 6U chassis
- ppb to \% application
- Large 8.4" LCD touch screen \& user friendly interface
- High performance diaphragm valves
- Ethernet connectivity for remote control
- Serial/Profibus/Modbus/Ethernet communication protocols
- Heated/purged valves box with optional monitoring system for hazardous gases
- Fast parallel chromatography

LARGE 8.4" TOUCH SCREEN

\& USER FRIENDLY INTERFACE

■
The Multidetek-2 offers an easy and complete The Multidetek-2 offers an easy and complete
interface working on Windows 7 enbedded. With its 8.4" clear LCD touch screen, it allows the operator to navigate easily through the different menus. Moreover, the system includes an Ethernet port for remote control.

COMPACT DESIGN

With the 6U chassis, this compact design can be installed in many areas from laboratory to process.

USB CONNECTOR/
EXTERNAL STORAGE

Data can be stored in a external drive and/or move to any other system or computer to be visualized at any time. This USB port is also available for software update or any other windows 7 interfacing.

HIGH PERFORMANCE DIAPHRAGM VALVE

1

The use of high performance diaphragm valve bring outstanding measurement performance. A longer lifetime and better performance on common GC techniques are achieved They also allow new analysis methods. $1 / 16^{\prime \prime}$ and/or $1 / 32$ " diaphragm valve connections, tubing and columns are used. Using $1 / 32$ " can reduce carrier gas consumption reducing operation cost. Consult LDetek application notes for more information.

FRONT ACCESS TO
THE ISOTHERMAL AND/OR PROGRAMIMED RAMPING OVENS

The Multidetek-2 has been designed to give a complete access to all the hardware parts without removing the unit from the rack. The complete maintenance of the system can then be done by keeping the system on gas. This design gives the benefits to reduce the recovery time of the GC after proceeding to maintenance of the system. Also, in case of change of configuration the columns can be easily replaced with the front door.

ISOTHERMAL AND/OR PROGRAMMABLE OVENS FOR ANY TYPE OF COLUMNS

The oven design can accept any type of packed, micro packed and plot columns. It offers a very stable and quick temperature control able to proceed to high temperature column regeneration in the unit. With its multiple programmable ovens, more applications are feasible with reduced analysis time.

MULTIDETEK2 CHART V1

Backgrounds \rightarrow	Air	Ar	He	Ne	Kr	Xe	H_{2}	O_{2}	$\mathrm{N}_{2} \mathrm{CH}_{4}$	CO	CO_{2}	$\mathrm{N}_{2} \mathrm{O}$			NH_{3}	CF_{4}	$\mathrm{C}_{2} \mathrm{~F}_{6}$	SF_{6}	NF_{3}	$\mathrm{C}_{4} \mathrm{~F}_{8}$	$\mathrm{C}_{3} \mathrm{~F}_{8}$	$\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{C}$	$\mathrm{C}_{2} \mathrm{~F}_{5}$	SiH_{4}	HCl	Cl_{2}	WF_{6}		Syngas	\leftarrow Back
Impurities	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Impurities
\downarrow	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	,
Ar (argon)	X	-	X	X	X	X	X	X	$\mathrm{X} \times$	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Ar
He (helium)	X	X	-	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	He
Ne (neon)	X	X	X	-	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	Ne
Kr (krypton)	X	X	x	X	-	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	Kr
Xe (xenon)	X	X	X	X	X	-	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Xe
H_{2} (hydrogen)	X	X	X	X	X	X	-	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	H_{2}
O_{2} (oxygen)	X	X	X	X	X	X	X	-	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	O_{2}
N_{2} (nitrogen)	X	X	X	X	X	X	X	X	- X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	N_{2}
CO (carbon monoxide)	X	X	X	X	X	X	X	X	X X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	CO
CO_{2} (carbon dioxide)	X	X	X	X	X	X	X	X	X X	X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	CO_{2}
$\mathrm{H}_{2} \mathrm{O}$ (moisture)	X	X	X	X	X	X	X	X	X X	X	X	X	-	-	X	X	-	X	X	-	-	-	-	-	-	X	-	-	-	$\mathrm{H}_{2} \mathrm{O}$
CF_{4} (tetrafluoromethane)	X	X	X	X	X	X	X	X	X X	X	x	X	X	X	X	x	X	X	X	X	X	X	X	X	X	X	X	X	-	CF_{4}
$\mathrm{C}_{2} \mathrm{~F}_{6}$ (hexafluoroethane)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	-	X	X	-	X	X	X	-	-	-	-	-	-	$\mathrm{C}_{2} \mathrm{~F}_{6}$
SF_{6} (sulfur hexafluoride)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	-	X	-	X	X	X	X	X	X	X	X	-	SF_{6}
$\mathrm{N}_{2} \mathrm{O}$ (nitrous oxide)	X	X	X	X	X	X	X	X	X X	X	X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{N}_{2} \mathrm{O}$
NF_{3} (nitrogen trifluoride)	X	X	X	x	x	X	X	X	$X \mathrm{X}$	X	X	X	X	X	X	-	X	X	-	X	X	X	X	X	X	X	X	X	-	NF_{3}
NH_{3} (ammonia)	X	X	X	X	X	X	X	X	X X	X	X	X	-	-	-	X	-	-	X	-	-	-	-	-	-	-	-	-	X	NH_{3}
PH_{3} (phosphine)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	x	X	X	X	X	-	-	-	-	-	-	-	-	-	X	PH_{3}
AsH_{3} (arsine)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	-	-	-	-	-	-	-	-	-	X	AsH_{3}
$\mathrm{CH}_{2} \mathrm{O}$ (formaldehyde)	X	X	X	X	X	X	X	X	X X	X	X	X	-	-	-	X	-	-	X	-	-	-	-	-	-	-	-	-	X	$\mathrm{CH}_{2} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ (acetaldehyde)	X	X	X	X	X	X	X	X	X X	X	X	X	-	-	-	X	-	-	X	-	-	-	-	-	-	-	-	-	X	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
CH_{4} (methane)	X	X	X	X	X	X	X	X	X -	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	CH_{4}
NMHC (non methane hydrocarbon)	X	X	X	X	X	X	X	X	X X	X	X	X	-	-	X	X	X	X	X	X	X	X	X	-	-	-	-	-	-	NMHC
$\mathrm{C}_{2} \mathrm{H}_{2}$ (acetylene)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{2} \mathrm{H}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{4}$ (ethylene)	X	X	X	X	X	X	X	X	X X	X	X	X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{2} \mathrm{H}_{4}$
$\mathrm{C}_{2} \mathrm{H}_{6}$ (ethane)	X	X	X	X	X	X	X	X	X X	X	X	X	x	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{2} \mathrm{H}_{6}$
$\mathrm{C}_{3} \mathrm{H}_{6}$ (propylene)	X	X	X	X	X	X	X	X	$X \mathrm{X}$	X	X	X	X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{3} \mathrm{H}_{6}$
$\mathrm{C}_{3} \mathrm{H}_{8}$ (propane)	X	X	X	X	X	X	X	X	X X	X	X	X	X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{3} \mathrm{H}_{8}$
$\mathrm{C}_{3} \mathrm{H}_{4}$ (propadiene)	X	X	X	X	X	X	X	X	$X \mathrm{X}$	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{3} \mathrm{H}_{4}$
$\mathrm{C}_{3} \mathrm{H}_{4}$ (propyne)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{3} \mathrm{H}_{4}$
$\mathrm{C}_{4} \mathrm{H}_{6}$ (1,3 butadiene)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{4} \mathrm{H}_{6}$
$\mathrm{C}_{4} \mathrm{H}_{8}$ (butylene)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{4} \mathrm{H}_{8}$
$\mathrm{C}_{4} \mathrm{H}_{10}$ (isobutane)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{4} \mathrm{H}_{10}$
$\mathrm{C}_{5} \mathrm{H}_{8}$ (pentadiene)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{5} \mathrm{H}_{8}$
$\mathrm{C}_{5} \mathrm{H}_{10}$ (pentene)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{5} \mathrm{H}_{10}$
$\mathrm{C}_{5} \mathrm{H}_{12}$ (isopentane)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{5} \mathrm{H}_{12}$
$\mathrm{C}_{6} \mathrm{H}_{12}$ (hexene)	X	x	X	x	X	X	X	X	x X x	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{6} \mathrm{H}_{12}$
$\mathrm{C}_{6} \mathrm{H}_{14}$ (hexane)	X	X	X	X	X	X	X	X		X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{6} \mathrm{H}_{14}$
$\mathrm{C}_{7} \mathrm{H}_{14}$ (heptene)	X	x	X	X	X	X	X	X			X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{7} \mathrm{H}_{14}$
$\mathrm{C}_{7} \mathrm{H}_{16}$ (heptane)	X	X	x	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{7} \mathrm{H}_{16}$
$\mathrm{C}_{8} \mathrm{H}_{16}$ (octene)	X	x	X	X	X	X	X	X	$\begin{array}{ll}X & X \\ x & \\ \end{array}$	X	x	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{8} \mathrm{H}_{16}$
$\mathrm{C}_{8} \mathrm{H}_{18}$ (octane)	X	X	X	X	X	X	X	X	$x \quad x$	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{8} \mathrm{H}_{18}$
$\mathrm{C}_{6} \mathrm{H}_{6}$ (benzene)	X	X	X	X	X	X	X	X	$x x^{x}$	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
$\mathrm{C}_{7} \mathrm{H}_{8}$ (toluene)	X	x	X	X	X	X	X	X	$x{ }^{x}$	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{7} \mathrm{H}_{8}$
$\mathrm{C}_{8} \mathrm{H}_{10}$ (xylene)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathrm{C}_{8} \mathrm{H}_{10}$
$\mathrm{H}_{2} \mathrm{~S}$ (hydrogen sulfide)	X	X	X	X	X	X	X	X	X X	X	X	X	-	X	X	X	X	X	X	-	-	-	-	-	-	-	-	-	X	$\mathrm{H}_{2} \mathrm{~S}$
COS (carbonyl sulfide)	X	X	X	X	X	X	X	X	X X	X	X	X	-	X	X	X	X	X	X	-	-	-	-	-	-	-	-	-	X	COS
SO_{2} (sulfur dioxide)	X	x	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	-	-	-	-	-	-	-	-	-	X	SO_{2}
CS_{2} (carbon difulfide)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	-	-	-	-	-	-	-	-	-	X	CS_{2}
$\mathrm{CH}_{4} \mathrm{~S}$ (methyl mercaptan)	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	-	-	-	-	-	-	-	-	-	X	$\mathrm{CH}_{4} \mathrm{~S}$

SPECIFICATIONS:

DETECTOR TYPE	PED, TCD, FID
RANGE	Application dependant
REPEATABILITY	< 1\% full scale
ACCURACY	Better than $\pm 1 \%$ full scale
STANDARD FEATURES	- Manual or autoranging (user selectable) - Microprocessor controlled - Windows 7 embedded user friendly interface - Ethernet port for remote control - Isothermal and/or programmed ramping ovens - Electronic flow control regulators for carrier \& sample gases - 8.4" LCD large touch screen - Self diagnosis system with auto-resolve alarm - 4-20 mA isolated outputs - Alarm Historic - Digital system status ouput for remote monitoring (dry relay contact) - 2 alarms contact - High resolution Chromatogram output
OPTIONS	- Serial communication (RS232/485) / Profibus / Modbus / Ethernet - Compact purifier attached to the chassis for generating high purity carrier gas - Integrated stream selector system - Digital inputs for remote starting - Analog inputs for connecting external instruments - Remote control for stream selector (LDGSS) - Purged valve box - Heated valve box - Monitoring system for hazardous gases
GAS CONNECTIONS	Sample: $1 / 8^{\prime \prime}$ compression fittings or $1 / 8$ VCR Vent: $1 / 8^{\prime \prime}$ compression fitting
CALIBRATION GAS	Span: 70\% to 90\% of the scale
SAMPLE PRESSURE REQUIREMENTS	10 to 30 PSIG
CARRIER PRESSURE REQUIREMENTS	100 PSIG
OPERATING TEMPERATURE	$10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$
SUPPLY	115 VAC, $50-60 \mathrm{~Hz}$ or 220 VAC, $50-60 \mathrm{~Hz}$
POWER CONSUMPTION	Maximum 500W
DRIFT	$< \pm 1 \%$ over 24 hours

DIMENSIONS:

APPLICATIONS:

Visit our web site for application notes related to many different fields WWW.Idetek.com

ENVIRONMENT

INDUSTRIAL GAS

PETROCHEMICAL

AGRICULTURE

ELECTRONIC GASES \& SEMICONDUCTOR

HYDROCARBONS PROCESSING

FOOD AND BEVERAGE

PHARMACEUTICAL AND MEDECINE

HEALTH AND SAFETY

271 St-Alphonse Sud, Thetford Mines, (Qc), Canada, G6G 3V7
Phone: 418 755-1319 • Fax: 418 755-1329 • info@Idetek.com www.Idetek.com

