Supplemental information for

"Automated mini-column solid-phase extraction cleanup for rapid analysis of chemical contaminants in foods by low-pressure gas chromatography – tandem mass spectrometry"

by Steven J. Lehotay, Lijun Han, and Yelena Sapozhnikova

USDA Agricultural Research Service Eastern Regional Research Center Wyndmoor, Pennsylvania; USA

Contact: Steven.Lehotay@ars.usda.gov

Automated Mini-SPE of QuEChERS **Reagent Blank** Extracts GC-MS Full Scan m/z 100-500, 1 µL injection including **APs**

Water in extracts when MgSO₄ not included in SPE yields worse cleanup

30 mg C₁₈+Z-Sep+CarbonX Mini-SPE of QuEChERS **Kale** Extracts GC-MS Full Scan m/z 100-500, 1 µL injection including APs

Conclusion: Not much cleanup, but 200-300 µL is ok

30 mg C₁₈+Z-Sep+CarbonX Mini-SPE of QuEChERS **Salmon** Extracts GC-MS Full Scan *m/z* 100-500, 1 μL injection including APs

Conclusion: Not much cleanup

30 mg C₁₈+Z-Sep+CarbonX Mini-SPE of QuEChERS **Pork** Extracts GC-MS Full Scan m/z 100-500, 1 µL injection including APs

Conclusion: Not much cleanup

30 mg C₁₈+Z-Sep+CarbonX Mini-SPE of QuEChERS **Avocado** Extracts GC-MS Full Scan *m/z* 100-500, 1 μL injection including APs

Conclusion: Not much cleanup

30 mg C₁₈+Z-Sep+CarbonX Mini-SPE of QuEChERS **Kale** Extracts <u>UV/Vis Absorbance Results</u>

30 mg C₁₈+Z-Sep+CarbonX Mini-SPE of QuEChERS **Salmon** Extracts <u>UV/Vis Absorbance Results</u>

45 mg MgSO₄+C₁₈+PSA+CarbonX Mini-SPE of **Salmon** Extracts

UV/Vis Absorbance Results

30 mg C₁₈+Z-Sep+CarbonX Mini-SPE of QuEChERS **Pork** Extracts <u>UV/Vis Absorbance Results</u>

45 mg MgSO₄+C₁₈+PSA+CarbonX Mini-SPE of QuEChERS **Pork** Extracts

UV/Vis Absorbance Results

30 mg C₁₈+Z-Sep+CarbonX Mini-SPE of QuEChERS **Avocado** Extracts <u>UV/Vis Absorbance Results</u>

45 mg MgSO₄+C₁₈+PSA+CarbonX Mini-SPE of Avocado Extracts

UV/Vis Absorbance Results

30 mg C₁₈+Z-Sep+CarbonX Mini-SPE of QuEChERS **Kale** Extracts Chlorophyll Removal and HCB Results vs. Extract Vol. Added

Conclusion: 200 µL extract needed for 80% HCB elution

30 mg C₁₈+Z-Sep+CarbonX Mini-SPE of QuEChERS Extracts

Recovery vs. Extract Vol. Added

Conclusion: most analytes were not retained by the sorbents

30 mg C₁₈+Z-Sep+CarbonX Mini-SPE of QuEChERS Extracts

Recovery vs. Extract Vol. Added

Conclusion: 300 µL extract needed for >70% elution of PBDEs

45 mg MgSO₄+C₁₈+PSA+CarbonX ITSP of QuEChERS Extracts

Recovery vs. Extract Vol. Added

Conclusion: 300 µL extract needed for >70% elution of PBDEs

30 mg C₁₈+Z-Sep+CarbonX Mini-SPE of QuEChERS Extracts

Recovery vs. Extract Vol. Added

Conclusion: ≥600 µL extract needed for full elution of PAHs

45 mg MgSO₄+C₁₈+PSA+CarbonX Mini-SPE of QuEChERS Extracts <u>Recovery vs. Extract Vol. Added</u>

Conclusion: ≥600 µL extract needed for full elution of PAHs

<u>Relative Recovery Differences for the Analytes in Mini-SPE</u> for the 300 μ L Extract Volumes vs. Avg. 600 μ L Result with 45 mg mini-cartridge results – 30 mg mini-cartridge results (n = 12 for 4 matrices)

Conclusion: Similar results using either mini-cartridge

Validation Experiments

Determine performance results in the use of automated mini-SPE cleanup in the LPGC-MS/MS analysis of pesticides and other contaminants in QuEChERS extracts of 10 different matrices.

Used mini-cartridges showing removal of chlorophyll and other matrix components

Final extract volumes = 278 \pm 5 μ L (n = 255) after 50 μ L addition of APs (and/MeCN) solution

Injection liner and septa after the 5 day experiment including 230 matrix extracts of diverse commodities

A little "dirt" here and there, but the analyte protectants did their job and results still looked great from start to finish.

Coumaphos in salmon after 230 injections of QuEChERS matrix extracts using mini-SPE **No internal standard** needed to still yield R² = 0.999 calibration curve

25 ng/mL std in salmon extract

Methamidophos Results (vs. atrazine-d5 IS) – all 325 analyses combined!

10 ng/mL std in kale

Acephate Results (vs. atrazine-d5 IS) – all 325 analyses combined!

25 ng/mL std in orange

Omethoate Results (vs. atrazine-d5 IS) – all 325 analyses combined!

5 ng/mL std in carrot

Dicrotophos Results (vs. atrazine-d5 IS) – all 325 analyses combined!

5 ng/mL std in pork

Dimethoate Results (vs. atrazine-d5 IS) – all 325 analyses combined!

5 ng/mL std in kiwi

Carbofuran Results (vs. atrazine-d5 IS) – all 325 analyses combined!

10 ng/mL std in orange

Diazinon Results (vs. atrazine-d5 IS) – all 325 analyses combined!

10 ng/mL std in wheat

Chlorothalonil Results (vs. atrazine-d5 IS) – all 325 analyses combined!

5 ng/mL std in basil

Chlorothalonil 5 ng/mL calibration standards over the course of 5 days (inj. #) RO = reagent-only; ion ratios within horizontal lines < $|\pm 10\%|$ of ref. ratio

Matrix contamination of system from canned black olive extracts slowly dissipated during sequence, but did not cause instrument or analytical performance problems.

Chlorpyrifos Results (vs. atrazine-d5 IS) – all 325 analyses combined!

5 ng/mL std in black olive

Cyprodinil Results (vs. atrazine-d5 IS) – all 325 analyses combined!

5 ng/mL std in black olive

TBECH Results (vs. atrazine-d5) – all 325 analyses combined!

10 ng/mL in wheat grain

Thiabendazole Results (vs. atrazine-d5) – all 325 analyses combined!

5 ng/mL in salmon

Flutriafol Results (vs. atrazine-d5 IS) – all 325 analyses combined!

5 ng/mL std in kale

Imazalil Results (vs. atrazine-d5) – all 325 analyses combined!

5 ng/mL std in apple

Myclobutanil Results (vs. atrazine-d5 IS) – all 325 analyses combined!

5 ng/mL std in apple

Endosulfan II Results (vs. atrazine-d5 IS) – all 325 analyses combined!

5 ng/mL std in apple

Endosulfan Sulfate Results (vs. atrazine-d5 IS) – all 325 analyses combined!

10 ng/mL std in orange

Endosulfan sulfate 5 ng/mL reagent-only and matrix-matched calibration standards

LOQ ≈2 ng/mL in all matrices; even after 325 injections, including 230 food extracts

Bifenthrin Results (vs. atrazine-d5 IS) – all 325 analyses combined!

5 ng/mL std in basil

Benzo(b+k)fluoranthene (vs. benzo(a)pyrene-d12 IS) – all 325 analyses combined!

(Es)fenvalerate Results (vs. atrazine-d5 IS) – all 325 analyses combined!

10 ng/mL std in orange

a ghost peak occurs in orange 1 injection later

Dechlorane Plus Results (vs. FBDE 126 IS) – all 325 analyses combined!

5 ng/mL std in wheat grain

